Zenonin paradokseista tunnetuin lienee nimellä "Akhilleus ja kilpikonna" -tunnettu tarina. Paradoksin mukaan kerkeäjalkainen Akhilleus ei kilpajuoksussa kykene koskaan ohittamaan kilpikonnaa, sillä ohittaakseen Akhilleuksen on ensin juostava siihen missä kilpikonna on. Kun Akhilleus saapuu tähän paikkaan, on kilpikonna liikkunut siitä eteenpäin. Sama toistuu kilpikonnan uuden sijainnin suhteen. Näin Akhilleus ei koskaan saavuta kilpikonnaa. Tämän paradoksin ratkaisu liittyy siihen, että vaikka äärellinen matka jaettaisiin äärettömän moneen osaan, matka on silti äärellinen.
Nuoli-paradoksin mukaan liike on mahdotonta, koska ”jos paikan suhteen liikkuva on aina nykyhetkessä, lentävän nuolen täytyy olla liikkumaton”.[3]
Kuvitellaan, että nuoli lentää yhtämittaisesti eteenpäin jonkin ajan verran. Jos otetaan mikä tahansa hetki kyseisenä aikana, on mahdotonta, että nuoli lentäisi tuolloin, koska kyseisen hetken pituus on nolla. Näin nuoli ei voi olla kahdessa paikassa yhtä aikaa. Jokaisella ajan hetkellä nuoli on yhtä liikkumaton, ja näin se on liikkumaton koko kyseisenä aikana lentäessään.
Eräs ratkaisu: Tässä tarkastellaan vain yhtä ajanhetkeä, nykyhetkeä. Aika siis pysäytetään. Koska aikaa ei kulu ja nopeus on matka jaettuna ajalla (aika ja matka siis nollia), tullaan epämääräiseen tilaan. Tarkastelemalla hetkeä, jossa aikaa ei kulu, ei ole liikettä. Nuolen liike muodostuu rajattomasta määrästä lyhyitä nykyhetkiä (joissa nuoli on lähes paikallaan (vrt. hidastus)), ei yhdestä nykyhetkestä.
Eino Kailan mukaan liikkeen paradoksit eivät ratkea millään kuvaustavalla, jossa liike (tai aika) hajotetaan osiin eli siirtymiseksi kohdasta A kohtaan B, koska tällöin liikkeen ”liikkuminen” kadotetaan, emmekä pysty kuvaamaan pisteiden välillä tapahtuvaa siirtymistä, koska niiden välille voidaan aina kuvitella uusi piste. Kailan mukaan liike ei ole varsinaisesti siirtymistä pisteestä toiseen, eikä aika ole siirtymistä hetkestä toiseen vaan molemmat ovat katkeamattomia kontinuumeja eli jatkumoita (Valitut teokset, 1). Vasta pysähtyessään voidaan todeta mihin pisteeseen liike päättyi.
Aristoteles kuvasi aikanaan ajan luonnetta sanomalla sen olevan kahden asian tilan välisen muutoksen kesto. Nuoliparadoksissa aikaa ja tapahtumista ajatellaan kahtena erillisenä vaikutuksena, vaikka sen sijaan olisi luontevaa ajatella ne erillisiksi vain tulkinnan kannalta, mutta reaalisesti samoiksi asioiksi. Ne näet ehdollistavat toisensa. Toisin sanoen ei ole tapahtumaa ilman aikaa, eikä aikaa ilman tapahtumaa.